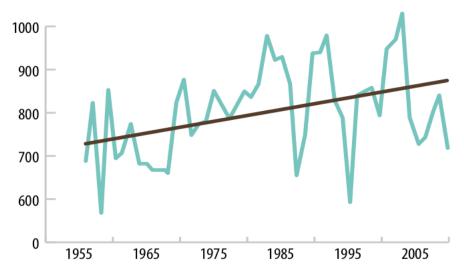


Resiliencia de la red multimodal de transporte frente al cambio climático

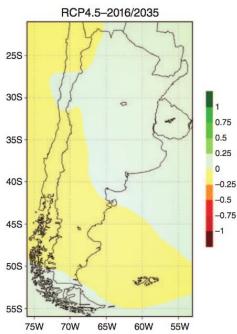
Francisco Jijena Sánchez Raghav Pant

fjijenasanchez@worldbank.org raghav.pant@oi-analytics.com Oxford Infrastructure Analytics



Motivación del Estudio – Cambio climático

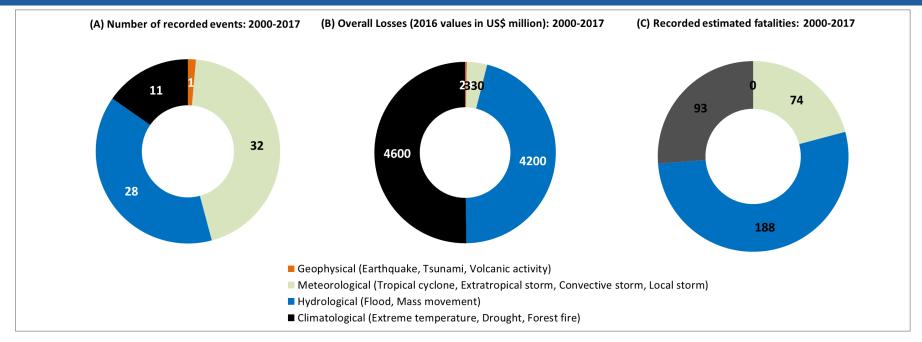
Los modelos climáticos indican un **incremento en la exposición a inundaciones** en áreas donde la mayor parte de la población y PIB están concentrados.

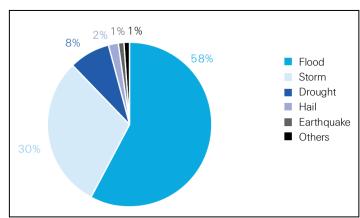

Histórico de precipitación media anual

Fuente: Argentina - Análisis Ambiental de País : serie de informes

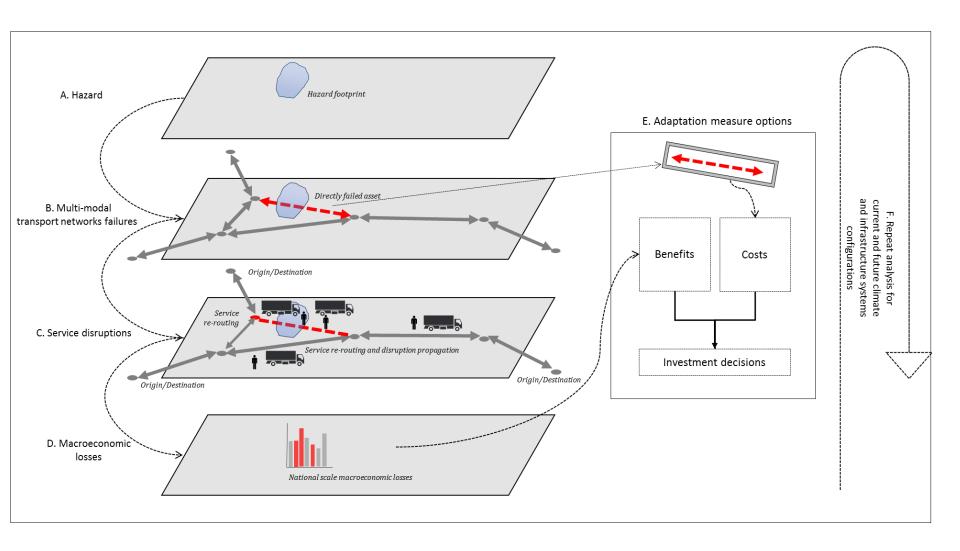
técnicos. Banco Mundial. 2016

Cambio en precipitación media anual hasta 2034

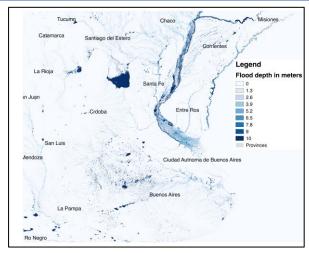

Fuente: Barros et al. (2015), Climate change in Argentina: trends, projections, impacts and adaptation. Climate Change, 6: 151-169. doi:10.1002/wc c.316

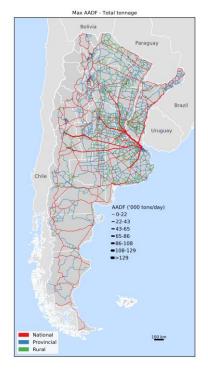

Motivación del Estudio-impactos de desastres naturales

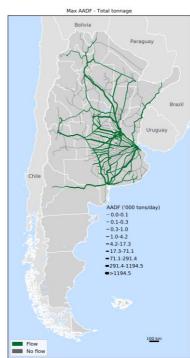
Munich Re: datos en diferentes clasificaciones de desastres naturales e impactos 2000-2017

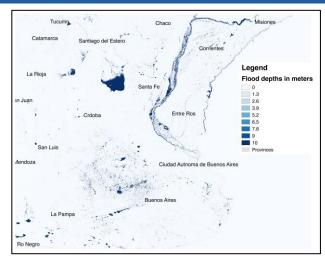

Source: https://www.munichre.com/touch/naturalhazards/en/naturalhazards/index.html

- Argentina presenta riesgos frente a multiples amenazas climáticas.
- Reporte del Banco Mundial sobre Desastres
 Naturales: En Argentina 1.8% de su área total está
 en riesgo, pero afectan al 57.4% de la población y
 al 63.2% del PIB

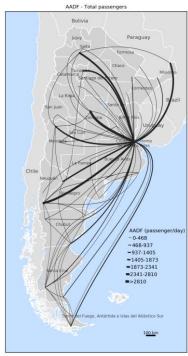


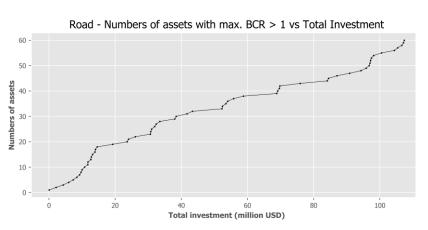

Swiss Re: datos sobre diferentes desastres naturales e impactos desde 1966-2015

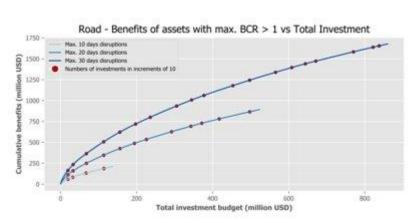

Metodología : Sistema de Sistemas



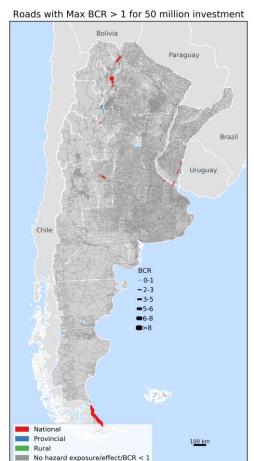

Representaciones de inundaciones y red



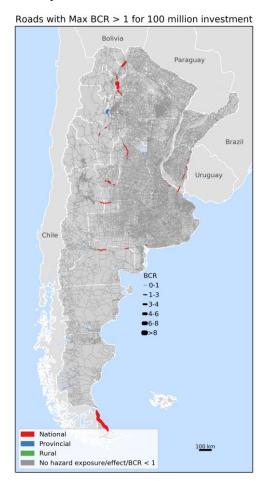



Bases de datos del estudio- Revisión del total de datos

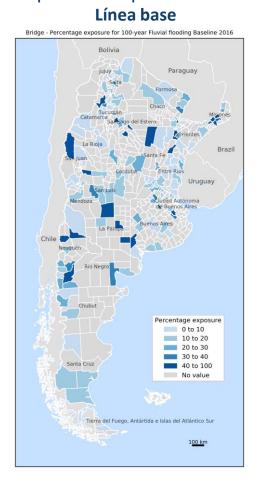
Base de datos	Alcance	Fuente	Año
Inundaciones	Nacional – Escenario de Base 2016 y estimaciones al 2050	FATHOM	2005, 2050
Delimitaciones locales y estadísticas	Nacional, provincial, y departamental	INDEC	2010
Datos macroeconómicos	PBI Nacional e indicadores PBG provinciales	INDEC	2004, 2016
Caminos	Nacional	Dirección Nacional de Vialidad	2016
Ferrocarriles	Nacional	Secretaría de Planificación de Transporte	2016
Hidrovías	Nacional e internacional		2016
Aeropuertos	Aeropuertos seleccionados con flujos domésticos de pasajeros		2016
Flujos Origen-Destino de mercancías	ODs interprovinciales	Secretaría de Planificación de Cargas – Ministerio de Transporte	2014-2016
Costos de transporte	Nacional		2016
Costos de adaptación	Caminos	Base de Datos ROCKS Banco Mundial- Argentina	2018

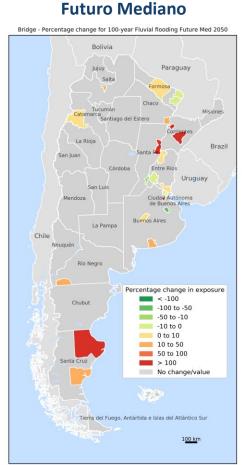

Beneficios de la adaptación basados en presupuestos – Red Vial

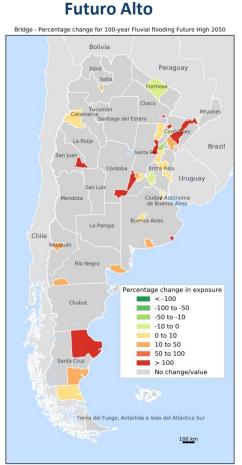
Para un presupuesto dado: ¿Cuántos son y dónde están los bienes priorizados por max. BCR > 1?



Presupuesto 50 millones USD

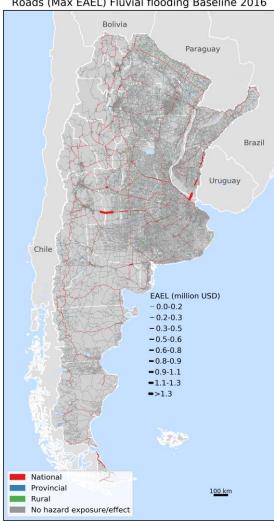

Presupuesto 100 millones USD




Exposiciones a amenazas— Ejemplo de cambios espaciales— Puentes de la red nacional vial

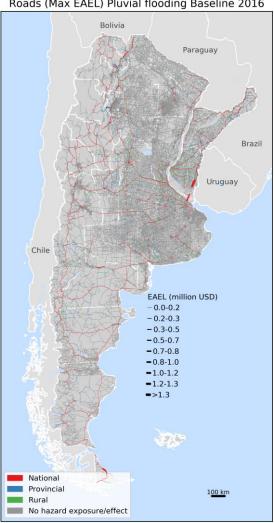
Exposición y cambios en inundaciones fluviales

- En varios departamentos más del 40% de los puentes están expuestos a condiciones actuales de inundaciones extremas
- En la estimación climática futura, varios departamentos ven un incremento superior al 100% en el número de puentes expuestos a inundaciones extremas



Source: OIA, Resultados del Modelo

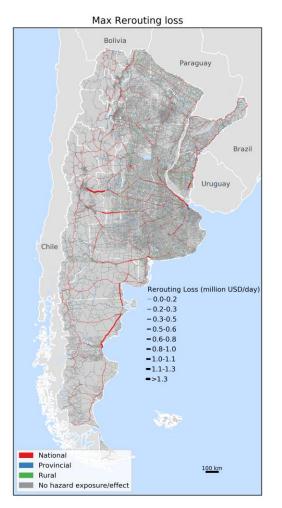
Evaluación de Riesgo – Red Vial

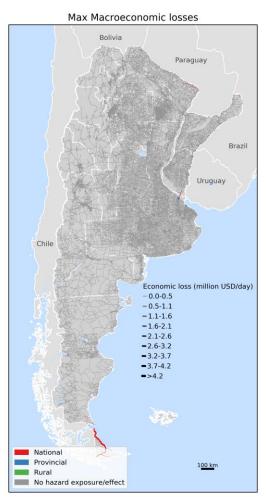

Riesgos de inundaciones fluviales

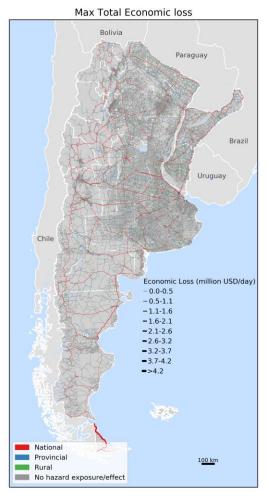
Roads (Max EAEL) Fluvial flooding Baseline 2016

Riesgos de inundaciones pluviales

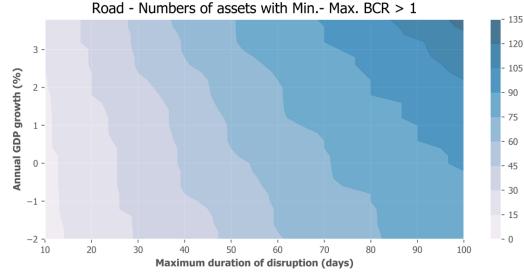
Roads (Max EAEL) Pluvial flooding Baseline 2016

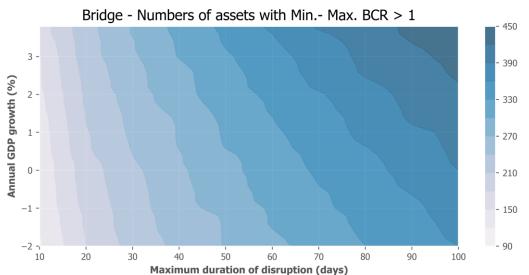

Puntos principales


- Riesgos más altos de 1.3-1.4 millones USD sobre las rutas 12 y 14 entre Buenos Aires y Entre Ríos;
- Existencia de varias ubicaciones con riesgos altos debido a inundaciones fluviales y pluviales


Análisis de criticidad – Red Vial

Puntos principales


- Muchas opciones de re-direccionamiento y muy pocas pérdidas macro-económicas por aislamiento de flujos;
- Los impactos más altos se dan **en caminos provinciales de Buenos Aires**, y en secciones de la **ruta nacional 3**, en Tierra del Fuego, Chubut, Santa Cruz; **4 y 9** en Buenos Aires y Santa Fe; **7** en Mendoza; **12 y 14** en Entre Rios.



Sensibilidades de adaptación según duración y crecimiento PBI

Importancia de una inversion resiliente:

En caminos

105

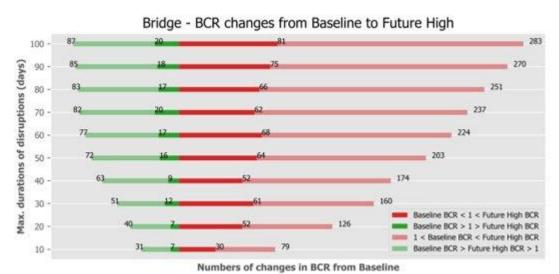
90 75

60

- 45

- 0

Crecimientos 7.2-8.4 veces cuando incrementa la duración de las disrupciones.


En puentes

Crecimientos en BCR de entre **2.7-3.1 veces** cuando incrementa la duración de las disrupciones.

Cambios en la relación Beneficio-Costo

Numbers of changes in BCR from Baseline

Las inversiones de adaptación para construir soluciones resilientes deben realizarse proactivamente en anticipación de futuros riesgos climáticos, en vez de realizarlos considerando los riesgos actuales.

De igual manera debe asegurarse la robustez de los valores B/C bajo los distintos escenarios.

Recomendaciones – Futuros pasos

Recomendación 1:

Necesidad de prepararse frente a amenazas climáticas extremas con una mayor frecuencia.

- La exposición a amenazas de todos los sectores del transporte en Argentina aumenta ante las estimaciones de cambio climático.
- Los mayores incrementos en extremos suceden en eventos de inundaciones con frecuencias de 1-en-10 y 1-en-75 años, para los que la mayor parte de los caminos y ferrocarriles fueron diseñados.
- Hay muchos nuevos casos de exposiciones en las estimaciones climáticas futuras.

Recomendación 2:

Una razón importante para invertir en resiliencia climática para combatir riesgos

 Varias instancias de riesgos en caminos, puentes, y líneas férreas incrementan en mas del 100% en las estimaciones climáticas.

Recomendaciones – Futuros Pasos

Recomendación 3:

Una fuerte razón para mejorar la falta de datos para el análisis de sistemas:

- El estudio tuvo que enfrentar falta de datos en:
 - Redes de infraestructura;
 - Flujos de transporte;
 - Asignación de costos de transporte;
 - Flujos económicos;
 - Desastres Climáticos;
 - Estacionalidad de Desastres y flujos de redes de transporte;
 - Duración de interrupciones y comportamientos de respuesta;
 - Costos de adaptación.
- Recomendamos que se invierta en mejorar esta falta de datos para estudios futuros y poder formular conclusiones mas robustas.

Recomendaciones – Futuros Pasos

Recomendación 4:

La incorporación de nuevas bases de datos podría generar otros índices de impacto.

- Por ejemplo, en otros estudios en Vietnam y Tanzania se cuantificó la población que queda sin acceso luego de las inundaciones.
- La capacidad productiva y la consecuente pérdida para los productores podría ser analizada.
- Inclusive podrían incorporarse los impactos en centros urbanos, las pérdidas de acceso al Mercado laboral o a servicios básicos y educación.
- Es extremadamente importante que se creen colaboraciones multi-sectoriales y multi-organizacionales que involucren a MoT, DNV, Secretaría de Planificación Territorial y Coordinación de Obra Pública, Secretaría de Planificación de Cargas, INDEC y otros departamentos para mejorar las capacidades para estandarizar y compartir datos.

¡Muchas gracias por su atención!

Francisco Jijena Sánchez Raghav Pant fjijenasanchez@worldbank.org raghav.pant@oi-analytics.com Oxford Infrastructure Analytics

